DISTRIBUTION OF CYTOKININS AND AUXIN IN THE CONIFER CROWN
H. N. Rasmussen1*, B. Veierskov2, R. Nørbaek and J. Hansen-Møller3
1Dept. of Forestry, Forest & Landscape, KVL, Hoersholm Kongevej 11, 2970
Hoersholm, Denmark 2Dept. of Plant Biology, KVL, Thorvaldsensvej 40,
DK-1871 Frederiksberg C, 3Danish Inst. of Agricultural Sciences,
Kirstinebjergvej 10, DK-5792 Aarslev and Blichers Alle 1, DK-8830 Tjele,
Denmark

Long seasonal growth interruptions with the formation of buds are
inherent in the woody life form. Both auxin and cytokinins influence axillary
meristem initiation, outgrowth and interactions between meristems; a rapidly
growing body of molecular evidence supports this classical notion. However,
hypotheses based on annuals, seedlings, or tissue cultures are challenged when
applied to branching patterns of trees. E.g., models that imply continuing
signaling between top and root system appear inadequate in a tall tree.
Vegetative buds in conifer trees are mainly preformed, and growth potential and
time of release highly predictable according to position. Buds with comparable
position and fate may be destructively analyzed over a range of time and
treatments. Buds contain high concentrations of auxin and cytokinins in a
pattern roughly consistent with their position and role. Distribution of iP, iPR,
and iPR-mP suggests that cytokinins are synthesized in needles, buds and
shoots, roots being only periodically important. Recent and new results will be
reviewed in light of apical control and dominance phenomena.